Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli.
نویسندگان
چکیده
Sequence heterogeneities of variable positions located at regions V1 and V6 of 56 cloned 16S rRNA genes were determined from six Escherichia coli strains. These nucleotides were involved in secondary structure base-pairing of stem-loops. Compensatory and single mutations have occurred but secondary structure was conserved. Eight different sequences were found in the stem at region V1 indicating that in these sites mutation rates are higher than those of homogenizatin processes. Region V6 showed two different structures (V6-I and V6-II) although heterogeneities were determined in nine sites. Strains ECOR52 and ECOR56 only showed the V6-I sequence, ECOR35 showed V6-II, whereas clones from ECOR42 and ECOR49 showed both types of V6 structures. Results were confirmed by PCR using V6 sequence-specific probes. Stem V6-II was also found in 16S rRNA sequences deposited in the RDP (Ribosomal Database Project) belonging to distantly related taxa; ancestral sequence V6-II seems to be homogenized in all rrn operons of the multigene family of strain ECOR35 producing effects of distortion in the molecular clock, similar to those that homoplasies could produce. V6 sequence-specific probes were applied to the 72 ECOR strains: half showed both V6-I and V6-II, and the rest had one or another. Only strain ECOR24 did not yield products in the PCR test and sequencing of 12 cloned 16S rRNA genes revealed a third form, V6-III, also found in the RDP. Concerted evolution by homogenization of the rRNA family may induce chronometric distortions responsible for a loss of ultrametricity in phylogenetic trees, particularly, of very closely related micro-organisms.
منابع مشابه
Development of 16S rRNA targeted PCR methods for the detection of Escherichia coli in Rainbow trout (Oncorhynchus mykiss)
Objectives: The presence of E.coli in fish intended for human consumption may constitute a potential danger, not only in causing disease, but also because of the possible transfer of antibiotic resistance from aquatic bacteria to those infecting humans. The objective of this study was to develop an improved PCR method based on species – specific 16 S rRNA gene primers (FES,...
متن کاملDETECTION OF BACTERIA BY AMPLIFYING THE 16S rRNA GENE WITH UNIVERSAL PRIMERS AND RFLP
Background: There is a conserved portion in the 16S rRNA gene of bacteria which can be amplified by the universal PCR method. This fragment is 996 bp in length. In this method, only one set of universal primers is used for the amplification of the conserved region of the 16S rRNA gene, in common bacterial pathogens. Therefore, using the universal PCR method, these bacteria are detectable on...
متن کاملDetection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR
Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods: Escherichia. coli O157:H7 was inoculated i...
متن کاملIdentification of Nontuberculous Mycobacteria Species Isolated from Water Samples Using Phenotypic and Molecular Methods and Determination of their Antibiotic Resistance Patterns by E- Test Method, in Isfahan, Iran
Introduction Many studies have shown epidemiological links between strains isolated in tap water, and those isolated from patients. Molecular methods linked to PCR are more reliable and faster for identification of non- tuberculous mycobacteria(NTM). In this study molecular methods were used for identification and typing of NTM. Materials and Methods Five hundred ml of 85 water ...
متن کاملGenetic Transformation of Amylase Gene to Ruminal Bacteroides Species Using Conjugation Consequence for Improvement of Rumen Enzyme
Rumen bacterial strains can potentially be manipulated to perform functions different from wild type species. The most numerous species of bacteria in the rumen and gut are species of the familyBacteroidetes, whichcan have the potential for genetic modification for enzyme production. One of the genetic manipulation of rumen bacteria can perform for production of starch digestive enzyme for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of systematic bacteriology
دوره 49 Pt 2 شماره
صفحات -
تاریخ انتشار 1999